
Package: sectorgap (via r-universe)
August 24, 2024

Type Package

Title Consistent Economic Trend Cycle Decomposition

Version 0.1.0

Description Determining potential output and the output gap - two
inherently unobservable variables - is a major challenge for
macroeconomists. 'sectorgap' features a flexible modeling and
estimation framework for a multivariate Bayesian state space
model identifying economic output fluctuations consistent with
subsectors of the economy. The proposed model is able to
capture various correlations between output and a set of
aggregate as well as subsector indicators. Estimation of the
latent states and parameters is achieved using a simple Gibbs
sampling procedure and various plotting options facilitate the
assessment of the results. For details on the methodology and
an illustrative example, see Streicher (2024)
<https://www.research-collection.ethz.ch/handle/20.500.11850/653682>.

License GPL-3

Encoding UTF-8

Roxygen list(markdown = TRUE)

RoxygenNote 7.2.3

Imports stats, KFAS, zoo, ggplot2, MCMCpack, dplyr, tidyr, tempdisagg

Depends R (>= 2.10)

LazyData true

Repository https://sinast3000.r-universe.dev

RemoteUrl https://github.com/sinast3000/sectorgap

RemoteRef HEAD

RemoteSha b600a41e8141240b34100c839dcdc8d84b56af8b

Contents
compute_mcmc_results . 2

1

https://www.research-collection.ethz.ch/handle/20.500.11850/653682

2 compute_mcmc_results

data_ch . 3
define_ssmodel . 4
estimate_ssmodel . 5
initialize_prior . 6
initialize_settings . 8
is.settings . 9
plot.ss_fit . 10
prepate_data . 11
print.prior . 13
print.settings . 13
print.ss_fit . 14
print.ss_model . 14
recessions_ch . 15
recessions_us . 15
transform_results . 16

Index 18

compute_mcmc_results Results for sampled parameters and states

Description

Computes estimation results for the MCMC sampling output for a specific HPDI and evaluation
function (e.g. mean or median).

Usage

compute_mcmc_results(
model,
settings,
mcmc,
data,
HPDIprob = NULL,
fit = NULL,
...

)

Arguments

model state space model object, returned by the function define_ssmodel

settings list with model setting, in the format returned by the function initialize_settings

mcmc list with draws of parameters and states (including burnin phase)

data list with at least two named components: tsm is a multiple time series object that
contains all observation series, weights is a named list of time series with (nom-
inal) weights, the list names correspond to the different groups, i.e., group1,
group2, subgroup1, if present in the model

data_ch 3

HPDIprob probability of highest posterior density interval, optional if fit is supplied
fit (optional) an object of class fit (returned by the function estimate_ssmodel

and this function).
... additional arguments (in case fit is supplied)

Details

If fit is supplied, the arguments model, settings, mcmc will be taken from this object.

Value

An object of class ss_fit.

data_ch Swiss data set

Description

A dataset containing quarterly Swiss economic data, sourced on November 20, 2023.

Usage

data_ch

Format

A list object with two lists. The first list cotains all untransformed endogenous variables:

output Gross domestic product at 2020 prices, in million
vaA value added in sector A: Goods-producing industries, at 2020 prices in million
vaB value added in sector B: Service industries, at 2020 prices in million
vaC value added in sector C: Government and adjustments,at 2020 prices in million
exp1 expenditure side sector i: Total consumption, at 2020 prices in million
exp2 expenditure side sector ii: Investment, at 2020 prices in million
exp3 expenditure side sector iii: Exports, at 2020 prices in million
exp4 expenditure side sector iv: Imports, at 2020 prices in million
fteA full-time equivalent empoyment in sector A: Goods-producing industries, in thousand
fteB full-time equivalent empoyment in sector B: Service industries, in thousand
fteC full-time equivalent empoyment in government sector, in thousand
employment full-time equivalent empoyment, in thousand
urate ILO unemployment rate, in percent
inflation consumer price inflation, year on year in percent

Source

KOF Swiss Economic Institute, ETH Zurich, Switzerland

4 define_ssmodel

define_ssmodel State space model

Description

Defines a state space model for the provided settings and data.

Usage

define_ssmodel(settings, data)

Arguments

settings list with model setting, in the format returned by the function initialize_settings

data list with at least two named components: tsm is a multiple time series object that
contains all observation series, weights is a named list of time series with (nom-
inal) weights, the list names correspond to the different groups, i.e., group1,
group2, subgroup1, if present in the model

Details

data is preferably the output of funtion prepare_data.

Value

A state space model object of class ss_model, which consists of an object returned by the function
SSModel of the package KFAS and in addition a list item called names which contains information
on the parameters to be estimated.

Examples

data("data_ch")
settings <- initialize_settings()
data <- prepate_data(

settings = settings,
tsl = data_ch$tsl,
tsl_n = data_ch$tsl_n

)
model <- define_ssmodel(

settings = settings,
data = data

)

estimate_ssmodel 5

estimate_ssmodel Bayesian estimation via Gibbs sampling

Description

Estimates the parameters and states of a multi-dimensional state space model by Bayesian methods
using a Gibbs sampling procedure.

Usage

estimate_ssmodel(
model,
settings,
data,
prior = initialize_prior(model),
R = 10000,
burnin = 0.5,
thin = 1,
HPDIprob = 0.68,
fit = NULL

)

Arguments

model state space model object, returned by the function define_ssmodel

settings list with model setting, in the format returned by the function initialize_settings

data list with at least two named components: tsm is a multiple time series object that
contains all observation series, weights is a named list of time series with (nom-
inal) weights, the list names correspond to the different groups, i.e., group1,
group2, subgroup1, if present in the model

prior list of matrices, each list item corresponds to one endogenous variable. See
initialize_prior

R number of draws, the default is 10000

burnin share of draws as burnin period, the default is 0.5

thin thinning parameter defining how many draws are discarded. 1 means no draw is
discarded, 2 means each second draw is kept, and so on

HPDIprob probability of highest posterior density interval, the default is HPDIprob = 0.68

fit already fitted object of class ss_fit, to continue drawing, see details

Details

If fit is supplied, the function will continue drawing R additional repetitions. In this case, all input
variables except for fit and R are ignored.

6 initialize_prior

Value

An object of class ss_fit.

Examples

data("data_ch")
settings <- initialize_settings()
data <- prepate_data(

settings = settings,
tsl = data_ch$tsl,
tsl_n = data_ch$tsl_n

)
model <- define_ssmodel(

settings = settings,
data = data

)
prior <- initialize_prior(

model = model,
settings = settings

)

fit <- estimate_ssmodel(
model = model,
settings = settings,
data = data,
prior = prior,
R = 100

)

initialize_prior Prior distribution

Description

Initializes the prior distributions.

Usage

initialize_prior(model, settings, lambda_d = 100, lambda_t = 100, df = 6)

Arguments

model state space model object, returned by the function define_ssmodel

settings list with model setting, in the format returned by the function initialize_settings

lambda_d drift smoothing constant (default: 100)

lambda_t trend smoothing constant (default: 100)

df degrees of freedom for inverse gamma distributions

initialize_prior 7

Details

All loadings and autoregressive parameters are assumed to be normal with mean zero and variance
1000.

All variance parameters are assumed to be inverse gamma distributed. The cycle variance has prior
mean 1, and the trend variances have prior mean 1/100.

The normal distribution is parametrized via mean and variance.

the inverse gamma distribution is parametrized degrees of freedom nu and scale s.

The mean of the inverse gamma distribution is given by beta / (alpha - 1) = beta / 2 = s, where
s = 2 beta, nu = 2 alpha.

Value

A data frame with one row per parameter and the following columns:

variable name of endogneous variable of equation

parameter_name name of parameter

par1 first parameter of specified distribution, mean for normal parameters and scale
for inverse gamma parameters

par2 second parameter of specified distribution, variance for normal parameters and
degrees of freedom for inverse gamma parameters

ini initial value for Gibbs sampler, i.e. mean of distribution given par1 and par2

distribution name of prior distribution

Examples

data("data_ch")
settings <- initialize_settings()
data <- prepate_data(

settings = settings,
tsl = data_ch$tsl,
tsl_n = data_ch$tsl_n

)
model <- define_ssmodel(

settings = settings,
data = data

)
prior <- initialize_prior(

model = model,
settings = settings

)

8 initialize_settings

initialize_settings Model settings

Description

Initializes settings with a basic example.

Usage

initialize_settings(
FUN_transform = function(x) 100 * log(x),
FUN_transform_inv = function(x) exp(x/100),
DFUN_transform_inv = function(x) 1/100 * exp(x/100)

)

Arguments

FUN_transform transformation function, the default is function(x) 100 * log(x)

FUN_transform_inv

inverse transformation function, the default is function(x) exp(x / 100)

DFUN_transform_inv

derivative of inverse transformation function, the default is function(x) 1 exp(x
/ 100), only used if non-linear constraints are present

Value

A nested list with settings for the following groups:

agg settings for the aggregate variable

group1 settings for group1, all variables in this group load on the aggregate variable,
unless otherwise specified

group2 settings for group2, all variables in this group load on the aggregate variable,
unless otherwise specified

subgroup1 settings for subgroup1, each variable in this group loads on the respective vari-
able in group1

agggroup settings for a group of variables that all load on the same variable

misc settings for variables that require individual settings

Each group contains at least the following list items:

trend 4 is a local linear trend, 3 a local linear trend with AR(1) drift, 2 a local linear
drift without shocks to trend growth, 0 implies no trend (e.g. if a variable shares
a trend with another one)

cycle 2 is an AR(2) cycle, 1 an AR(1) cycle, and 0 a white noise cycle, each with
normal innovations

is.settings 9

transform logical indicating if the transformation function should be applied to the variable
or group of variables

variable variable name(s)

variable_label variable label(s)

label label of group

The blocks group1, group2, subgroup1 additionally contain the following list items:

corr 4 implies that trends and drifts are correlated, 2 that only dirfts are correlated, 1
that only trends are correlated, and 0 or NA implies no correlation. Only appli-
cable for group1, group2, subgroup1

load_name name of the variable that all variables in the group load (for group1, group2)
and which is used for the aggregation

load_lag lags of the of the variable that all variables in the group load (for group1,
group2)

constr_drift logical indicating if constraints for the drifts should be enforced

constr_trends logical indicating if constraints for the trends should be enforced
constr_trends_linear

logical indicating if constraints for the trends are linear or nonlinear, the default
is FALSE in which case the constraint is enforced on the level series, else, it is
enforced on the growth rates.

variable_neg variable names that are negative and thus need to be subtracted when construct-
ing weights

The block subgroup1 additionally contain the following list item:

match_group1 a character vector of the same length as variable indicating the matching vari-
ables in group1, in the same order as variable, NA indicates no match

is.settings Settings object validity check

Description

Checks if settings are a valid object of class settings.

Usage

is.settings(x, dfl = NULL, return.logical = FALSE)

Arguments

x settings object

dfl list of data frames, returned by function settings_to_df

return.logical If return.logical = FALSE (default), an error message is printed if the object
is not of class settings, if return.logical = TRUE, a logical value is returned

10 plot.ss_fit

Value

A logical value or nothing, depending on the value of return.logical.

plot.ss_fit Plots of results

Description

Creates a set of time series, density, or trace plots.

Usage

S3 method for class 'ss_fit'
plot(
x,
plot_type = "timeseries",
estimate = "median",
data = data,
n_col = 3,
n_sep = 5,
file_path = NULL,
title = TRUE,
save = FALSE,
device = "jpg",
width = 10,
height = 3,
units = "in",
highlighted_area = NULL,
plot_start = NULL,
plot_end = NULL,
alpha = 0.05,
include_burnin = FALSE,
...

)

Arguments

x object of class ss_fit

plot_type type of plots, options are "timeseries", "density", "trace"

estimate character specifying the posterior estimate. Valid options are "mean" and "median",
the default is estimate = "median".

data list with at least two named components: tsm is a multiple time series object that
contains all observation series, weights is a named list of time series with (nom-
inal) weights, the list names correspond to the different groups, i.e., group1,
group2, subgroup1, if present in the model

prepate_data 11

n_col number of columns for grid plots
n_sep increments of x axis ticks in years
file_path file path for plots
title boolean indicating if plots should contain titles
save boolean indicating if plots should be saved, if FALSE, the plots will be printed

instead, default is save = FALSE (ignored if file_path is provided)
device character string with format used in ggsave

width plot width in units, for grid plots adjusted for the number of plot columns
n_col

height plot height in units, for grid plots adjusted for the number of plot rows implied
by n_col

units units for plot size ("in", "cm", "mm", or "px")
highlighted_area

data frame with two columns called start and end containing start and end date,
e.g. 1990.25 and 1992.75 for 1990 Q2 until 1992 Q4 (only used if plot_type
= "timeseries")

plot_start start of x axis in years, e.g., 1990.5 (only used if plot_type = "timeseries")
plot_end end of x axis in years, e.g., 2010.25 (only used if plot_type = "timeseries")
alpha cut off value for posterior (only used if plot_type = "density")
include_burnin logical indicating if burnin phase should be included (only used if plot_type =

"trace")
... ignored

Value

nothing

prepate_data Input data

Description

Prepares the required input data, it performs the transformations to the raw data and computes the
necessary weights for the constraints.

Usage

prepate_data(
settings,
tsl,
tsl_n = NULL,
tsl_p = NULL,
ts_start = NULL,
ts_end = NULL,
extend_weights = FALSE

)

12 prepate_data

Arguments

settings list with model setting, in the format returned by the function initialize_settings

tsl time series list with all untransformed endogenous series

tsl_n time series list with nominal level series for aggregate output agg and its sub-
components in group1, group2

tsl_p time series list with price series for aggregate output agg and its subcomponents
in group1, group2

ts_start start date, e.g. c(2000, 2) or 2000.25

ts_end end date, e.g. c(2000, 2) or 2000.25

extend_weights logical indicating if missing weights at beginning/end of sample should be filled
with the last/first available value

Details

Either tsl_n or tsl_p must be supplied.

Weights are forward/backward extended with the first/last value if the supplied time series do not
cover the entire period.

Value

A list with five components:

tsm multiple time series object with all (transformed) endogeneous variables

real multiple time series object with real series of agg, group1, group2

nominal multiple time series object with nominal series of agg, group1, group2

prices multiple time series object with price series of agg, group1, group2

weights_growth list of multiple time series objects with weights for the growth constraints, i.e.,
for series group1, group2, subgroup1 if applicable

weights_level list of multiple time series objects with weights for the non linear level con-
straints, i.e., for series group1, group2, subgroup1 if applicable

Examples

data("data_ch")
settings <- initialize_settings()
data <- prepate_data(

settings = settings,
tsl = data_ch$tsl,
tsl_n = data_ch$tsl_n

)

print.prior 13

print.prior Print prior object

Description

Prints the model specifications of an object of class prior.

Usage

S3 method for class 'prior'
print(x, call = TRUE, check = TRUE, ...)

Arguments

x object of class prior

call logical, if TRUE, the call will be printed

check logical, if TRUE, the model class will be checked

... ignored.

Value

No return value

print.settings Print settings object

Description

Prints the model settings.

Usage

S3 method for class 'settings'
print(x, call = TRUE, check = TRUE, ...)

Arguments

x object of class settings

call logical, if TRUE, the call will be printed

check logical, if TRUE, the model class will be checked

... ignored.

Value

No return value

14 print.ss_model

print.ss_fit Print ss_fit object.

Description

Prints the model specifications of an object of class ss_fit.

Usage

S3 method for class 'ss_fit'
print(x, call = TRUE, check = TRUE, ...)

Arguments

x object of class ss_fit

call logical, if TRUE, the call will be printed

check logical, if TRUE, the model class will be checked

... ignored.

Value

No return value

print.ss_model Print ss_model object

Description

Prints the model specifications of an object of class ss_model.

Usage

S3 method for class 'ss_model'
print(x, call = TRUE, check = TRUE, ...)

Arguments

x object of class ss_model

call logical, if TRUE, the call will be printed

check logical, if TRUE, the model class will be checked

... ignored.

Value

No return value

recessions_ch 15

recessions_ch Swiss recessions

Description

Recession periods in Switzerland since 1990.

Usage

recessions_ch

Format

A data frame with two columns:

start start date of recession, in quarters

end end date of recession, in quarters

recessions_us US recessions

Description

Recession periods in the United States since 1960.

Usage

recessions_us

Format

A data frame with two columns:

start start date of recession, in quarters

end end date of recession, in quarters

Source

National Bureau of Economic Research (NBER)

16 transform_results

transform_results Format results

Description

Formats the output series into a tibble in long format and computes contribution series.

Usage

transform_results(
fit,
data,
settings,
estimate = "median",
HPDIprob = 0.68,
transformed = TRUE

)

Arguments

fit fitted object

data list with at least two named components: prices is a multiple time series object
that contains price indices for all relevant series, weights, is a named list of time
series with (nominal) weights, the list names correspond to the different groups,
i.e., group1, group2, subgroup1, if present in the model

settings list with model setting, in the format returned by the function initialize_settings

estimate character specifying the posterior estimate. Valid options are "mean" and "median",
the default is estimate = "median".

HPDIprob probability of highest posterior density interval, the default is HPDIprob = 0.68

transformed boolean indicating if the transformed series should be used.

Details

data is preferably the output of funtion prepare_data.

Value

A data frame with results in long format.

Examples

data("data_ch")
settings <- initialize_settings()
data <- prepate_data(

settings = settings,
tsl = data_ch$tsl,
tsl_n = data_ch$tsl_n

transform_results 17

)
model <- define_ssmodel(

settings = settings,
data = data

)
prior <- initialize_prior(

model = model,
settings = settings

)

fit <- estimate_ssmodel(
model = model,
settings = settings,
data = data,
prior = prior,
R = 100

)
df <- transform_results(

fit = fit,
data = data,
estimate = "median"

)

Index

∗ datasets
data_ch, 3
recessions_ch, 15
recessions_us, 15

compute_mcmc_results, 2

data_ch, 3
define_ssmodel, 4

estimate_ssmodel, 5

initialize_prior, 6
initialize_settings, 8
is.settings, 9

plot.ss_fit, 10
prepate_data, 11
print.prior, 13
print.settings, 13
print.ss_fit, 14
print.ss_model, 14

recessions_ch, 15
recessions_us, 15

transform_results, 16

18

	compute_mcmc_results
	data_ch
	define_ssmodel
	estimate_ssmodel
	initialize_prior
	initialize_settings
	is.settings
	plot.ss_fit
	prepate_data
	print.prior
	print.settings
	print.ss_fit
	print.ss_model
	recessions_ch
	recessions_us
	transform_results
	Index

